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Abstract. The purpose of this study is to investigate architectural char-
acteristics of cell arrangements in breast cancer histology images. We
propose the use of topological data analysis to summarize the geomet-
ric information inherent in tumor cell arrangements. Our goal is to use
this information as signatures that encode robust summaries of cell ar-
rangements in tumor tissue as captured through histology images. In
particular, using ideas from algebraic topology we construct topologi-
cal descriptors based on cell nucleus segmentations such as persistency
charts and Betti sequences. We assess their performance on the task of
discriminating the breast cancer subtypes Basal, Luminal A, Luminal B
and HER2. We demonstrate that the topological features contain use-
ful complementary information to image-appearance based features that
can improve discriminatory performance of classifiers.

1 Introduction

Clinical diagnosis of cancer is performed by assessing properties of biopsied tis-
sue. For breast cancer, architectural criteria based on the organization and ar-
rangement of cells, form critical cues for a pathologist to assess and grade tissue
samples. Methods to automatically and objectively analyze architectural char-
acteristics of human tissue from histology images are therefore needed to aid
pathologists and to computationally quantify tissue architecture.

A variety of geometric approaches to pattern or shape recognition have
been investigated over the last 15 years. Of these, topological data analysis
(TDA) enables the investigation of structural characteristics of high-dimensional
data [1,3,4]. The strength of TDA lies in its two core ideas: (a) representing ob-
jects based on their topology making it invariant to small changes in shapes and
hence robust to noise, and (b) considering a range of coarse to fine scales of
topological changes, thereby, summarizing large and small scale objects.

This paper explores to which extent TDA can characterize cell organization
and tissue in breast cancer histology images. We study how to analyze nuclear
arrangements through TDA to distinguish genetically derived breast cancer sub-
types. These subtypes can be used to guide personalized treatments. We propose
topological methods for feature extraction and present a method to combine
topological summaries with other imaging features thereby demonstrating that
topological features can add information over local image-based descriptors. We
first review the necessary background of computational topology for TDA in § 2.1



and present its application to the analysis of breast cancer histology images in
§ 2.2. In § 3, we discuss and evaluate the extracted topological summaries.

2 Methodology

2.1 Background on topological data analysis and homology groups

Topological data analysis uses concepts from algebraic topology [10,3] and pro-
vides methods to characterize geometric information in the data. The classical
way is to represent the data in the form of combinatorial objects called simplicial
complexes to form a topological space. TDA then studies connectivity informa-
tion and characterizes loops, voids and higher dimensional surfaces within the
space [4]. To analyze tissue architecture the simplicial complex is built, for ex-
ample, based on the center points of segmented cell nuclei, which define a point-
cloud. See the section on the Vietoris-Rips filtration on point clouds below. We
review the necessary concepts in topological data analysis in what follows.

Simplicial complexes and filtration. A simplicial complex consists of a col-
lection of simplices, such as vertices, edges, triangles or d-dimensional simplices,
which is closed under inclusion. More precisely, a simplicial complex is a collec-
tion, K of d-dimensional simplices, τ , such that if τ ∈ K, all its faces, σ ⊂ τ ,
are also in K. A subcollection L of simplices from K which itself is a simplicial
complex, forms a subcomplex of K, denoted as L ↪→ K. A nested sequence of
simplicial subcomplexes that ascends from an empty set all the way up to K is
called a filtration of K. An N -step filtration is therefore denoted by the sequence,

∅ = F0K ↪→ F1K ↪→ F2K ↪→ . . . ↪→ FN−1K ↪→ FNK = K.

Topological summaries using homology groups. The representation of
data by a simplicial complex, K, allows for its characterization through homol-
ogy groups, which we denote as Hd(K). Hd(K) is the collection of d-dimensional
holes. Homology groups consist of groups of d-dimensional homology generators,
e.g., 1D connected components for d = 0, 2D loops for d = 1, 3D cavities for
d = 2, and so on. The rank of Hd(K) is called the d-th Betti number. We now
discuss a simple example of a filtration of a 2D simplicial complex formed by
point cloud data entities, which will form the basis of our analysis of tissue data.

Example of Vietoris-Rips filtration on point cloud simplicial complex.
Consider a set of points, C ⊂ Rd (Fig. 1, left) and define the largest possible
simplicial complex, KC , consisting of all subsets of C. We construct a subcom-
plex by using a threshold on the pairwise distances between any two points. We
define a simplicial subcomplex as a function of filtration scale, s. The subcom-
plex FsKc consists of a subcollection of points with pairwise distance between
them less than s. It is helpful to think of this subcollection of points obtained
when the balls of radius, s, centered at each point intersect (Fig. 1, center). In-
creasing the ball radii results in a chain of subcomplexes defining a filtration of
Kc. For a given s, the 0-dimensional homology group consists of the set of inde-
pendent components. The 1-dimensional group consists of the loops. The rank
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Fig. 1: Vietoris-Rips filtration of a point cloud. Two steps of filtration that depict
topological features forming and disappearing (left). Three loops as H1 formed during
filtration persist for different length of filtration (right).

of H0(Kc) is the count of connected components and the rank of H1(Kc) is the
count of loops (Fig. 1, right). These topological objects can be summarized in
terms of their persistence during the filtration steps. This results in a signature
representation of topology of the data in the form of persistent diagrams or bar
charts [2].

2.2 Cell architecture, nuclei arrangement and topology

Clinical diagnosis of breast cancer is usually performed by analyzing H&E-
stained histology images. The arrangement of cells and other structures are some
of the cues guiding a pathologist to characterize tissue and assess prognosis.
Hence, TDA as described in Sec. 2.1 seems a natural choice to quantify such
arrangements. In previous work, TDA has been applied to microarray data.
Nicolau et al. [12] propose cluster analysis of persistence charts derived from
the simplicial complex of microarray data to identify breast cancer subtypes.
However, the topological characterizations of nuclear arrangements in tumor tis-
sue has not yet been investigated. Fig. 2 suggests that such an approach could
capture architectural characteristics, using an example H&E stained histology
image. The patterns in the organization of cells is evident simply by observing
the nuclei in a region (Fig. 2, b). Distinct topological object characterizations

a

b

Fig. 2: Example of a histology image for a tumor of subtype, Basal. The highlighted
loops formed due to the arrangement of nuclei are an example of architectural feature.



such as nuclear connectivity and loops based on the Vietoris-Rips filtration of
nuclei centers look promising as summaries of the arrangement of nuclei in tissue.

3 Experiments

We present our topological analysis of nuclei arrangements using a dataset of
breast cancer microarray tissue samples, imaged at the University of British
Columbia from a Washington University cohort of patients [13]. The dataset
consists of 111 subjects with two images each. Subtypes of Basal, Luminal A,
Luminal B, and HER2 have been assigned to each sample by molecular means.
The ensemble has 38 Basal, 35 Luminal A, 18 Luminal B and 17 HER2 cases and
our goal is to assess whether these subtypes differ in terms of their topological
characteristics. We combine the features extracted from two images to construct
a single patient level representation.

Constructing topological summaries of homology images. As discussed
in § 2.1, we define the simplicial complex by representing the collection of nuclei
as point clouds such that the center of mass of each nucleus denotes a vertex. We
perform the Vietoris-Rips filtration of this complex by growing balls centered at
each vertex. The initial start radius of a ball is proportional to the mass of its
nucleus. Since each nucleus has a different size, such an initialization ensures
that at the first step, the balls approximately encircle the respective nuclei.
We successively increase the radii of all balls with equal rates and stepsizes.
Beginning at the start scale, where the number of connected components is
equal to the number of nuclei, this filtration computes the generators of zero
(H0: connected components) and one dimensional (H1: loops) homology groups.
We use the Perseus software [11,9] to perform the filtration on the Rips complex.

We summarize the resulting topological objects into a sequence of Betti num-
bers, e.g., Fig. 3 a and b. We convert the Betti numbers into densities, by dividing
them by the area of the tissue in the image making the representation invari-
ant to tissue size. Fig. 3 b suggests that loops exhibit the most dynamics with
changing filtration scale. Thus, in another representation, we consider the bar
chart representation, called the persistence diagram, based on birth and death
of loops during filtration (Fig. 3 c and d). Small bars can be considered as noise
artifacts in imaging and segmentation. For robustness, we consider the top few
persistent bars (lengthwise), arranged in the order of their birth, as features.

3.1 Evaluating topological features

We perform leave-one-out cross-validation experiments to demonstrate the dis-
criminatory capabilities of the topological features to classify tissue images into
subtypes. We use distance weighted discrimination (DWD) [8] as a classifier.
For each pair of subtypes, we evaluated the prediction accuracy using the two
classifiers on Betti densities, top 5 and top 75 persistent bars. The best results
were obtained for the Basal vs Luminal A classification using Betti density fea-
tures and for Luminal B vs HER2 classification using the top 5 persistent bars.



Three examples of H 0 Betti sequence
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Fig. 3: Different topological summaries for nuclei arrangements in histology images
demonstrated for three different examples. (a) and (b) display the Betti densities for
H0 and H1 homology as a function of filtration steps, while (c) shows the corresponding
persistence diagrams, and (d) shows how those are summarized into just the 5 longest
bars, in birth order (connecting line segments represent the order of arrangement).

For Basal vs Luminal A, we achieved a classification accuracy of 69.86%, an im-
provement of 17.80% over the baseline accuracy of predicting the subtype based
on the proportion of the samples of the largest class. For Luminal B vs HER 2
subtype classification, the topological features improved the prediction accuracy
by 17.14% over the baseline, giving an overall accuracy of 68.57%.

3.2 Joint analysis of topological and other imaging features

Besides topological connectivity and nuclei arrangements, a histology image has
other potentially complementary information about tumor tissue. We augment
the topological features with those extracted from local image intensities: we con-
struct another set of features learned directly from image patches. A dictionary
is learned by modeling 9×9 pixel image patches as sparse linear combinations of
dictionary elements [7]. Each patch of an image is encoded with this dictionary.
The frequency of usage of each dictionary element is summarized with a 128 bin
histogram resulting in a 128-dimensional feature vector for each image.

We define the combined feature space as a product space of topological fea-
tures, represented as a matrix T , and the patch based image feature space, repre-
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b. Using distance weighted discrimination (DWD)
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Fig. 4: Repeated 5-fold cross validation for Basal vs Luminal A: combining TDA with
patch-based image features suggests improvement in performance for certain cases.

sented as a matrix I. In these matrices, let rows represent samples and columns
represent features. We construct a convex combination of columnwise concate-
nated features, to form the augmented feature matrix, C =

(
αT (1− α)I

)
,

where α controls the feature weight; α is a relative weight when both feature
matrices are normalized to have unit variance. This is achieved by mean centering
and dividing the two matrices by the sum of their eigenvalues. Another possibil-
ity is to use a multi-kernel approach to combine complementary features [5].

To investigate whether topological features and the image based-features
provide complementary information relevant to cancer subtypes, we assess the
receiver operator characteristics (ROC) of the classifiers over the entire range of
α ∈ [0, 1]. Note that ROC analysis is not applicable to leave-one-out crossvali-
dation since we get test prediction only on a single test sample for each trained
model. Hence, we perform Monte-Carlo (MC) repetitions of 5-fold crossvalida-
tion using both SVM and DWD classifiers for 3500 repetitions. We choose the
average area under the ROC curve (AUC) as the metric of performance. AUC
is a more stable performance measure than accuracy as it considers the whole
range of thresholds for a classifier [6]. For each MC iteration, we compute the
false positive (FPR) and true positive (TPR) rates for every crossvalidation run
for the test data, resulting in an average FPR and TPR to give a mean AUC. We
test this for the classification tasks that resulted in the best performance with the
leave-one-out classification using only the topology features in § 3.1, i.e., Basal
vs Luminal A and Luminal B vs HER2. The trends in AUC as a function of α
suggest that, for some cases, the topological Betti features perform better when



a. Using support vector machine (SVM)

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.58

0.59

0.60

0.61

0.62

0.63

0.64

A
v
e
ra

g
e
 a

re
a
 u

n
d

e
r 

th
e
 R

O
C

 c
u

rv
e Only imaging (alpha=0), only Betti densities (alpha=1),

 Monte-Carlo repeats = 3500

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
v
e
ra

g
e
 a

re
a
 u

n
d

e
r 

th
e
 R

O
C

 c
u

rv
e Only imaging (alpha=0), only persistence (alpha=1),

 Monte-Carlo repeats = 3500

Betti densities Top 5 persistence bars

b. Using distance weighted discrimination (DWD)
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Fig. 5: Repeated 5-fold cross validation for Luminal B vs HER2: combining TDA with
patch-based image features suggests improvement in performance for certain cases.

compared to the patch based image-appearance features for both the classifica-
tion tasks using either of the classifiers. (Fig. 4 and Fig. 5). In terms of AUC, the
Betti features perform better than the persistence summaries, for discriminating
Basal from Luminal A. However, the persistence summaries outperform the Betti
features, in average AUC metric, for Luminal B vs HER2 discrimination. Another
observation is that the AUC peaks in the middle for some of the plots suggest-
ing that a combination of the two features may provide useful information. The
results on average accuracy metric as a function of α did not match for all cases
with those obtained for the AUC metric. For the top 5 persistence summaries for
Luminal B vs HER2 with DWD, both the average AUC and the accuracy analy-
ses suggest that topological features massively outperform the image-appearance
features. In particular, using top 5 persistence summaries with DWD improve
the AUC by 43% and the accuracy by 22% over imaging features and their
combination further adds 13% and 8% improvements, respectively. Additional
results are in the supplementary material at http://www.cs.unc.edu/~nsingh/
publications/nsingh2014topology_breast_cancer_supplementary.pdf.

4 Discussion

We proposed the use of topological methods to summarize architectural features
of cancerous tissue. We constructed geometric features that quantitatively cap-
ture arrangements of nuclei as seen in histology images. We explored multiple
topological features derived from the homology groups resulting from filtrations

http://www.cs.unc.edu/~nsingh/publications/nsingh2014topology_breast_cancer_supplementary.pdf
http://www.cs.unc.edu/~nsingh/publications/nsingh2014topology_breast_cancer_supplementary.pdf


of simplicial complexes defined using nuclei locations. Our experiments suggest
that, for most cases, topological features perform as good as the patch based fea-
tures on the task of discriminating cancer subtypes. We also demonstrate that
for certain combinations, the topological features provide complementary infor-
mation, which in turn improves the performance of classifiers. Our future work
will include exploring more informative features from the persistence diagram
and will repeat the analysis on bigger datasets. A possibility could be to use
persistent bars from the chart but maintain their order of filtration. This would
result in a sparse feature vector of size equal to the number of filtration steps.

We believe that the topological study of histology image data provides com-
plementary information to image-appearance about tissue properties. It holds
promise to improve our understanding of cytological and architectural differ-
ences in tissues. In the context of cancer a topological characterization of tumor
tissue could potentially aid clinicians in cancer diagnosis and treatment planning.
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