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Abstract

Scene classification is used to categorize images into dif-

ferent classes, such as urban, mountain, beach, or indoor.

This paper presents work on scene classification of televi-

sion shows and feature films. These types of media bring

unique challenges that are not present in photographs, as

many shots are close-ups in which few characteristics of the

scene are visible.

In our work, the video is first segmented into shots and

scenes, and key frames from each shot are analyzed before

aggregating the results. Each key frame is classified as in-

door or outdoor. Outdoor frames are further broken down

by a semantic segmentation which provides a label to each

pixel. These labels are then used to classify the scene type

by describing the arrangement of scene components with a

spatial pyramid.

We present results from operating on a large database of

videos and provide a comparison with selected work from

the literature on photographs. Evidence of the success of the

semantic segmentation is provided on a set of hand-labeled

images. Our work improves the semantic segmentation and

scene classification of images and, to the best of our knowl-

edge, is the first paper that details a full working system on

video.

1. Introduction

Scene classification applied to video identifies the time

interval of occurrence of various scene types (e.g., urban,

indoor, desert, mountain, open water). Such a system pro-

vides context in further video analysis algorithms, either

with the use of the final scene type or intermediate infor-

mation such as the location of water and road within each

frame. In the domain of content-based image or video re-

trieval, a database of media can be cataloged and easily

searched for types of scenes.

Many challenges exist for a scene classification system

on images. Variations in view-point and lighting can dras-

tically change the appearance of a scene and objects in it.

Even with successful recognition of the components of a

scene, their spatial arrangement plays an important part in

defining its class. The application of an image scene classi-

fication algorithm to television shows and feature films has

even more challenges. Many shots in such videos are close-

ups of characters, often alternating between characters ex-

changing dialogue. These close-ups are interspersed with

wide-angle shots with a good view of the background. In

very close-up shots and in action sequences, the background

is often blurry, thereby confusing any part of the scene type

that is visible. Although some of these issues may occur

in photographs, they are less common due to the different

objectives of a photographer in choosing the composition

of the scene and in discarding photos that do not meet this

standard. These types of effects must be accounted for in an

application of scene classification to video.

The methods developed in our work take a divide-and-

conquer approach by semantically segmenting the video

and frames within it. We first break the video into shots

and scenes. A shot is a sequence of frames from a single

camera and a scene is a sequence of shots that present con-

tinuous action or are semantically correlated. Key frames

are classified as indoor or outdoor using a two-stage pro-

cess starting from raw features on regions of the image. On

outdoor frames, further analysis is done to understand the

scene. From an initial set of segmentations, adjacent seg-

ments containing similar materials are merged and the re-

sulting regions are classified into material categories such as

sky, water, or building. This assigns a category to each pixel

in the image, known as a semantic segmentation. The ar-

rangement of these scene components are characterized by

dividing the image into a regular grid of different sizes and

computing the distribution of materials in each region. This

spatial pyramid is used to provide a final classification for

the image. Results are aggregated across shots and across

scenes, producing a result for each scene of the video.

In the domain of semantic segmentation, the novel ar-
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eas of our work include the use of multiple segmentations,

merging segments containing similar materials before try-

ing to classify them, and using strong color, texture, edge,

line, and shape features.

We apply semantic segmentation to scene classification

with the use of Spatial Pyramid Matching [20] rather than

the standard computation of a histogram of scene concepts

[5, 10, 17, 29, 32, 35]. Another unique aspect of our method

is multi-label classification, whereby an image may fall into

more than one scene category or none at all, a complication

which most prior works do not even attempt (Boutell et al.

[6] is one of the few that does).

The most unique aspect of our work is the application

of scene classification to video. All known prior works in

this area simply operate on some subset of frames from

the video [17], but do not attempt to summarize the re-

sults across the video or deal with the unique challenges in

this domain. Our methods handle wide-angle and close-up

shots, and summarize results for each scene in the video.

2. Related Work

Published algorithms for scene classification of images

often involve dividing the image into a regular grid and clas-

sifying the material components of each grid cell [5, 10, 17,

29, 32, 35]. The occurrence of each material over the image

is then computed and the scene classified from this vector.

Unsupervised materials can also be used by clustering the

features extracted from each region into a pre-determined

number of classes [15].

Grid methods produce a rough semantic segmentation;

however, other works that target this area (but not scene

classification) achieve more successful results. Shotton et

al. model texture, layout, and context with a conditional

random field [30]. Starting from a segmentation, various

probabilistic models can be applied to classify each region

of an image [1, 18, 34]. Yang et al. use appearance and a

bag of key points model with mean-shift to assign labels to

regions of the image [36], while Corso et al. apply a graph-

shifts method to the problem [11].

In lieu of a semantic segmentation, additional ap-

proaches typically use a bag of key points [24, 26] in com-

bination with Latent Dirichlet Allocation [13], probabilis-

tic Latent Semantic Analysis [2], Spatial Pyramid Match-

ing [20], or a combination of such techniques [3, 8]. A 2D

Hidden Markov Model has also been attempted [21] as well

as a wavelet coefficients representation of features with a

hierarchical Dirichlet process hidden Markov trees [19].

Examining the power spectrum of an image is another

approach taken. By using the power spectrum and Principal

Components Analysis, the type of scene can be determined

[31]. However, this approach is specific to photographs

where care is taken in framing the scene from a distance

with the horizon visible across the image.

Some methods only tackle simple tasks such as indoor

vs. outdoor, city vs. landscape, or detecting a sunset

[4, 22, 28, 32]. The two-stage indoor/outdoor classification

approach by Serrano et al. [28] is also used in our work.

Few prior works on scene classification of video exist.

Israel et al. [17] use scene classification results on images to

produce results on video by selecting key frames to classify,

but do not further describe how the scene results from each

frame are used. Bosch et al. [3] show results on a selection

of frames from the film Pretty Woman, while Shotton et al.

[30] produce semantic segmentation results on a selection

of frames from television shows. However, these results are

purely anecdotal as this is not the main focus of their work.

3. Approach

Our method starts by detecting shot and scene bound-

aries in the video. Key frames are extracted from each shot

for processing. Key frames that are too dark are discarded.

Remaining frames are classified as indoor, outdoor, or un-

determined. Undetermined frames include close-up shots in

which little background is visible. In the case of an outdoor

result, the frame is segmented and the materials within are

classified to produce a semantic segmentation. The spatial

arrangement of these scene components are then character-

ized and used to classify the outdoor scene type. The results

on individual frames are combined across shots and scenes

to produce a final set of results for the video.

3.1. Semantic Segmentation

A semantic segmentation consists of breaking an image

into regions and categorizing each into a set of pre-defined

classes. We refer to the semantic categories as materials and

have selected the following groups: building, grass, person,

road, rock, sand/gravel, sky/clouds, snow/ice, trees/bushes,

vehicle, water, and miscellaneous. All segments in the im-

age are classified as one of these materials.

Figure 1 provides an overview of the algorithm used.

Multiple segmentations of the image are generated. Seg-

ments are merged together when they are likely to belong to

the same material class. Each segment is classified accord-

ing to its local features and the final result is generated by

averaging the results across the set of segmentations.

We first provide the background details on features be-

fore proceeding with their usage in semantic segmentation.

3.1.1 Feature Extraction

Given a region or segment of any shape in an image, a num-

ber of features can be extracted to characterize its appear-

ance. We represent color in CIELAB space. K-means is

used to compute a dictionary of colors, then a histogram

represents the distribution of colors in a region. We com-

pute edge strength and edge direction histograms by using
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Figure 1. Overview of semantic segmentation. Multiple segmen-

tations are produced and similar segments are merged. From ex-

tracted features, segments are classified and the labels combined

across segmentations.

the Sobel transform. A line length histogram is formed with

Hough transform to detect lines. Texture takes the form of

a texton histogram [33]. Shape is represented by circularity,

convexity, distance to the best fit polygon, and angularity,

all computed from the boundary of the region [12]. The re-

sults for each of these features are concatenated together,

forming a feature vector to characterize the appearance of

the region.

3.1.2 Segmentation

Image segmentation is a difficult task and no single result

is likely to be correct. However, each result performs ac-

curately on some portion of the image and together they

can be used to obtain better performance [16, 23]. The im-

age is resized to 720 × 480 pixels, or one with roughly the

same number of pixels that maintains the original aspect ra-

tio. Segmentations are created using Efficient Graph-Based

Segmentation [14] with three different sets of parameters.

Some of the segments produced consist of only part of

an object or larger region of material. We achieve a bet-

ter result in classification if some of these smaller segments

are merged together. Adjacent segments are used to train a

Random Forest [7] as an affinity classifier. We use positive

examples of adjacent segments that belong to the same ma-

terial class and negative examples of adjacent segments that

belong to different material classes. The feature vector for

each segment is computed as the color, edge, line, texture,

and shape features described in Section 3.1.1. The abso-

lute value of the element-wise difference between the fea-

ture vectors is used as the feature set for the classifier. We

can now compute the difference between the feature vectors

of two adjacent segments and decide whether to merge them

based on the affinity score produced by the classifier.

An affinity score is calculated for each pair of adjacent

segments. If the highest affinity score is above a predeter-

mined merging threshold, then the associated pair of seg-

ments are merged into a single segment and the feature vec-

tor of all affected pairs of segments is recalculated. The

merging threshold is computed during training, such that

for all data points producing a score above this threshold,

a precision of 95% is attained. The merging and recalcu-

lation process is repeated until the highest affinity score is

no longer above the threshold. The procedure is followed

independently for each segmentation.

3.1.3 Material Classification

The next step is to use the feature vectors to develop a classi-

fier that predicts the material class given an image segment.

The color, edge, line, texture, and shape features are com-

puted on the segment. Each element in the feature vector is

normalized to fall between zero and one. Each segment has

its material labeled by hand as ground truth. The labeled

feature vectors are used in training a multi-class Support

Vector Machine (SVM) with a radial basis function kernel

[9]. Thus, any novel image segment can be classified by ex-

tracting features and predicting its class label with the SVM.

The resulting material scores are averaged across the

three different segmentations at each pixel. Now to assess

the material results over a specific region (not necessarily a

segment), the material scores from each pixel in the region

can be averaged to produce a material occurrence vector. To

produce a semantic segmentation, the material result with

the greatest score is selected for each pixel.

3.2. Scene Classification

Now that we have detected the presence of different ma-

terials as components of a scene, we turn to the problem

of classifying the category of the whole image. Images are

first classified as indoor, outdoor, or undetermined. Outdoor

images are then further classified with a semantic segmenta-

tion and the arrangement of their components characterized

with a spatial pyramid. Figure 2 provides an overview of

this process. The outdoor scene categories chosen in our

work are coast/beach, desert, forest, grassland, highway,

lake/river, mountainous, open water, sky, snow, and urban.

We treat this as a multi-label problem by allowing an image

to belong to any number of these categories or none at all.

3.2.1 Indoor/Outdoor Classification

We wish to classify each image as indoor, outdoor, or un-

determined. An undetermined image is when an observer

cannot clearly tell whether the camera is viewing an indoor
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Figure 2. Overview of scene classification on images. A two-stage

SVM classification is used to classify the image as indoor, outdoor,

or undetermined. On outdoor images, a semantic segmentation is

performed and used in a spatial pyramid to compute scores for

outdoor categories.

or outdoor scene. An example of this case is a close-up

shot where little of the background is visible, and people or

objects are taking up most of the foreground.

Each image is split into a 4 × 4 grid. The color, edge,

line, and texture features are computed separately on each

grid cell to produce a set of feature vectors. These feature

vectors, along with the label of indoor, outdoor, or undeter-

mined for the image, are used to train an SVM with a radial

basis function kernel. Given a feature vector for a rectangu-

lar portion of an image, the classifier will predict whether

the region belongs to an indoor, outdoor, or undetermined

image. The results from this classifier on each grid cell in

the image, consisting of a score between zero and one for

each of the three categories, are concatenated and then used

as a feature vector for another SVM classifier with a linear

kernel which predicts the class of the whole frame.

This two-stage classification is used on each frame of

the video being processed. If the frame is indoor or unde-

termined, it is the final result for the frame. If it is outdoor,

further processing is done to narrow down the class.

3.2.2 Outdoor Scene Classification

In classification of an outdoor scene, a semantic segmenta-

tion is first produced following Section 3.1. From this, each

pixel will have a score for each material category with the

largest score representing the most likely one.

A material occurrence vector is computed for a region in

an image by averaging the score vectors for each pixel as a

measure of the prevalence of each material. For example,

this would describe the proportion of water, sand, sky, etc.

To characterize the placement of materials in the image,

a spatial pyramid of material occurrence vectors is com-

puted as was shown in Figure 2. We follow the method

of Lazebnik et al. [20], placing a sequence of increasingly

finer grids over the image and computing the material occur-

rence vector for each grid cell. Three levels of this pyramid

are used, with grid sizes of 1×1, 2×2, and 4×4. The vec-

tors are weighted such that those at a finer resolution receive

a larger weight; we use weights of 1/4, 1/4, and 1/2, respec-

tively. Thus, we have one material occurrence vector for the

1x1 grid, 4 for the 2×2, and 16 for the 4×4, each weighted

accordingly. After concatenating these, we use a histogram

intersection kernel with an SVM to classify the image. Note

once again that an image may belong to more than one class

or none at all. Thus, a classifier is trained independently for

each category using positive and negative examples for the

class. The set of trained classifiers can now produce a score

from zero to one for each scene category on a novel image.

3.3. Video

Now turning to the application of video, we apply the

concepts developed on images in combination with tech-

niques unique to video. The first step we take in processing

a video is to segment it into shots and scenes. Key frames

are extracted from each shot, dark frames are discarded, and

the scene is classified in each remaining key frame. The re-

sults are then combined across shots and then across scenes

to produce a result for each scene.

3.3.1 Segmenting Video

We first need to segment the video into shots and scenes.

Shot and scene boundary detection are performed by the al-

gorithm outlined by Rasheed and Shah [25]. Key frames

can be extracted from each shot also by the method of

Rasheed and Shah [25], or simply by selecting a set of

equally spaced frames from each shot. We chose the later

for simplicity, using five equally spaced frames per shot.

3.3.2 From Frames to Shots to Scenes

If a shot is too dark, this algorithm cannot accurately clas-

sify the scene. Thus, we perform a quick first step to discard

such frames.

Taking the remaining frames, scene classification is per-

formed on each following the method in Section 3.2. In a

typical shot, a single scene is within view. Characters and

objects may move and the camera may also change its field

of view. Our assumption is that a simple method of averag-

ing results from the key frames within the shot will produce

a reasonable result. Thus, for each class, the scores are av-

eraged across the key frames in the shot.

Many shots within a video tend to be close-up, where

little background is visible and the results of the scene clas-
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sifier are not meaningful. This problem tends to be con-

sistent across a single shot, but varies from shot to shot

in a scene. Often 80 or 90% of the shots in a scene are

close-ups. Thus, averaging the results across a scene the

way we did across a shot does not produce a useful re-

sult. Taking the maximum result of the scores for each class

is one possible solution. We have achieved better results

by taking the 95th percentile result, interpolating if neces-

sary. For class c, let the scores for the N shots in a scene

be represented by s1, s2, ..., sk, ..., sN , sorted in an ascend-

ing manner. The percentile of each score can be computed

as pk = 100

N
k, where k is the index in the ascending list

of scores. If there exists a pk that equals 95, we take the

result sk. Otherwise, we interpolate by finding values pk

and pk+1 such that pk ≤ 95 ≤ pk+1 and take the result

sk + N

100
(95 − pk)(sk+1 − sk).

Resulting scores for each scene class can be com-

pared with a pre-determined threshold, selecting only those

greater than this value. The threshold for each class is

learned by assessing the performance on a set of test videos

and selecting the threshold that achieves the desired perfor-

mance for the application.

4. Experiments

This section discusses the results from a set of experi-

ments used for assessing the performance of the algorithm.

We first look at the accuracy of semantic segmentation.

Next, we provide results on scene classification of pho-

tographs, including a comparison of our method with that

of Lazebnik et al. [20]. Finally, we produce results on a

large video data set, establishing that the methods described

herein have successfully been applied to production video.

4.1. Semantic Segmentation

The semantic segmentation algorithm requires a ground-

truth labeling of segments in images. 1019 images were

segmented and each segment hand-labeled as one of the

material categories. These images were obtained from the

LabelMe database [27], Google Image Search, and frames

from a selection of movies. Five-fold cross-validation is

used to train on 80% of the data and evaluate results on the

remaining 20%. This is done five times, averaging the re-

sults over each try. A confusion matrix is used to analyze

the results, as shown in Table 1. For each material, it shows

the percentage of the time that a segment labeled as that

material is correctly classified and the percentage that it is

incorrectly classified as each of the other materials.

The most accurately classified material is sky/clouds

which was performed correctly 91% of the time. The most

common misclassification is snow/ice, incorrectly classified

as water 28% of the time. The results are partially depen-

dent on the quantity of training data per class. For example,
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building 71 1 6 1 2 2 5 0 2 7 1 3

grass 1 71 1 0 3 7 0 0 11 0 3 2

person 5 1 75 2 1 0 2 0 4 3 1 6

road/sidewalk 7 1 3 52 2 12 0 3 0 4 15 1

rock 4 4 7 3 47 16 0 0 13 1 1 4

sand/gravel 4 9 3 3 14 48 2 6 3 1 2 6

sky/clouds 2 0 0 2 1 1 91 1 0 0 3 0

snow/ice 4 0 2 6 2 2 13 41 0 2 28 1

trees/bushes 4 3 2 0 3 1 2 1 77 1 3 4

vehicle 22 0 15 2 4 0 0 1 1 51 0 3

water 1 3 1 3 1 11 8 4 1 1 66 1

miscellaneous 13 6 26 1 7 2 3 0 4 13 1 23

Table 1. Material confusion matrix. Average classification rates for

individual classes are listed along the diagonal. The off-diagonal

entries represent the mis-classification rates.

a smaller set of data was used to train rocks and snow/ice,

while a larger amount was available for sky and trees.

Classification errors are common in images with explo-

sions, fire, smoke, fog, or smog. These translucent obstruc-

tions result in the background being partially visible, but

not clear. Regions containing smoke or fog are commonly

misclassified as sky. Fall leaves and dead grass are exam-

ples in which the materials were not trained in the altered

color state, resulting in errors. Blurred backgrounds due to

high motion or an unfocused camera also produce incorrect

results.

4.2. Scene Classification on Photographs

For computing results on scenes, all of the labeled im-

ages described in the previous section are used to train the

material classifier. 9855 images from the LabelMe database

[27], Google Image Search, and frames from movies were

labeled with the appropriate scene class. There is no overlap

between this image set and that used for materials. Recall

that an image may belong to any number of classes. To

evaluate the results of this method, we use five-fold cross-

validation and the measures precision and recall. Precision

represents the percentage of detected scenes that truly be-

long to the category, while recall measures the portion that

are detected rather than missed. A precision-recall curve

shows the results as the detector threshold is varied. To pro-

vide a simple summarization, the area under the precision-

recall curve is computed, known as average precision.

We compare two methods: that detailed in this work and

a bag of key points model with spatial pyramid matching by

Lazebnik et al. [20], both run on our data set. We use code
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Our Method Lazebnik et al. [20]

Coast/Beach .60 .44

Desert .76 .48

Forest .71 .84

Grassland .79 .56

Highway .67 .79

Lake/River .44 .42

Mountainous .73 .81

Open Water .70 .67

Sky .82 .83

Snow .75 .69

Urban .90 .87

Outdoor .94 .99

Indoor .73 .87

Average .73 .71

Table 2. Performance comparison on image data set, measured as

the average precision.

provided by Lazebnik, with a dictionary of size 400 and a

3-level pyramid. Results from both are shown in Table 2.

Examining the results with our method, the outdoor and

urban categories achieve the greatest accuracy. This is

partly due to the fact that there are more training images

for these categories. Lake/river achieves quite poor results.

This category is very difficult as the reflection of surround-

ing terrain on to a small body of water produces a confusing

appearance, much different than the blue water of an ocean.

Our data set contains a lot of variability for each scene

category, including close-up images and ones that belong

to multiple categories (or none at all). For close-up views

of characters in a car, the correct classification is ambigu-

ous. The classifier sometimes produces an indoor result and

sometimes outdoor, depending on the visible background.

In comparing our results with Lazebnik et al. [20], we

found that our method achieves significantly higher perfor-

mance on some categories (up to a 28% increase). Their

greater success on the indoor category is likely due to the

SIFT descriptors and bag of words model better capturing

the variability of indoor scenes. Our method’s success on

coast/beach, desert, and grassland is likely due to the classi-

fication of water, sand, and grass materials, so that the loca-

tion of these specific scene components are used in classify-

ing the scene. In addition, Lazebnik et al. do not use color in

their model. Overall, we have shown that our method using

semantic segmentation performs comparable to a state-of-

the-art method on our challenging data set, with exception-

ally large gains in some categories.

4.3. Scene Classification on Video

The scene classifiers were trained using the entire data

set described in the previous section. Now to evaluate it on

video, we use a set of 281 videos from 49 different televi-

sion shows consisting of 110 hours of content, as well as

six feature films. Each video was segmented into shots and

scenes, and the class of each scene was labeled by hand.

We present a comparison of performance on individual

key frames versus the result after aggregating over shots and

scenes. Table 3 shows the average precision for each class.

By aggregating results using our method, the performance

increases by 50% - clearly a necessary step when operating

on video.

With the exception of the indoor category, the precision

and recall scores achieved on video were lower than on our

image data set. This emphasizes that the image data set is

not truly representative of the variability seen in video.

When taking a photo, much care is taken in selecting the

view point and lighting. Landscape photos typically have

little foreground to occlude the background. Any people

present are placed such that other important parts of the

scene are still readily visible. In addition, many photos are

discarded, leaving the few remaining that meet the expecta-

tions of the photographer. Different objectives are consid-

ered in videos for television shows and movies. Typically,

the character speaking takes up most of the view and the

background is of lesser importance. Often very few of the

frames in a scene have enough background visible to enable

classification. In our data set, 70% of the frames analyzed

were close-up views. All of these factors led to the lower

performance with video.

We also provide a sampling of results by running the al-

gorithm on video, as shown in Figure 3. For each class,

sample frames from a scene are shown. Each was classified

as indoor, outdoor, or undetermined. In the case of an out-

door result, a semantic segmentation was performed and the

frame classified. Through combining the results from these

frames and others in the scene, a correct classification was

achieved.

5. Conclusions and Future Work

We have developed a system that integrates segmenta-

tion, recognition of scene components, and classification of

whole images and video sequences. Many of the challenges

in scene classification of video were explored. Techniques

addressing the unique properties of video content are a ne-

cessity. Further improvements could still be made to ad-

dress the numerous close-up shots present in video. Face

and body detection and tracking could be used to identify

when the background is obstructed. Background segmen-

tation with the use of motion cues might also provide as-

sistance. With the current system, only a few shots from

each scene end up providing results for the final classifica-

tion. Other techniques can be developed to extract useful

information from a larger portion of the shots in a scene.

As other works have achieved success with bag of key

points techniques [3, 20], we would like to investigate their
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Key Frames Scenes

Coast/Beach .13 .34

Desert .04 .09

Forest .29 .45

Grassland .32 .47

Highway .16 .33

Lake/River .02 .07

Mountainous .05 .11

Open Water .33 .52

Sky .24 .34

Snow .04 .08

Urban .33 .62

Outdoor .67 .86

Indoor .72 .82

Average .26 .39

Table 3. Comparison of performance on video data set, measured

as the average precision. The performance when classifying indi-

vidual key frames is compared with using our method of combin-

ing results across shots and scenes.

usage in classifying material concepts. Thus, a pixel-wise

segmentation would not be necessary, but the power of an-

notating such concepts can be employed. Concepts applica-

ble to indoor scenes can also be incorporated and the sepa-

rate indoor/outdoor classifier will no longer be necessary.

Although a large database of videos has been used in the

analysis of this system, examples are still lacking for some

classes, such as desert, mountain, and snow. A more varied

set of videos with a larger variety of terrain would be use-

ful. Exploring the performance difference when training the

material or scene classifiers on video frames instead of pho-

tographs would help to further understand the differences in

processing video versus photographs.
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Figure 3. Sample results on video. For each class, four sample frames from a scene are shown. Each was classified as indoor, outdoor, or

undetermined. In the case of an outdoor result, a semantic segmentation is shown using the legend at the bottom. Through combining the

results from these frames and others in the scene, a correct classification was achieved.
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