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Motivations

= Intelligent selection and compression of
data

= Exploration efficiency
m Repeatable and robust operations
m Assistance in robot path planning
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Problem Definition

m Detection

— Locate as many rocks as possible while
minimizing false detections

s Segmentation
— Accurately localize boundaries

~_# = Classification
— Geologic classes
— Features: albedo, color, texture, shape
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Approach

Rock Detection/Segmentation

|

Feature Extraction

Geologic Classification
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Feature Extraction

m Features for detecting or geologically
classifying rocks:

— Albedo and Color
— Texture
— Shape
m Assume that we have an accurate
boundary for each rock

m In later sections, use these features for:
— Rock detection
— Geologic classification
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Albedo and Color

= Rock composition
— Red: oxidized iron
— Black: carbonaceous (organic) material
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Albedo and Color

Rock Intensity | Intensity Intensity Color Histogram
Mean Variance Histogram (RGB, HSV or CIELAB)
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Texture

m Size, shape, arrangement of component
elements

m Grains: size, distribution, sorting,
permeability, shape, orientation

sandstone , .
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bbl ted with fine abrasion marks
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together
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Fractal Dimension

m Measures self-similarity

ARG NE RN N

= Defined according to: N f

1 _ N r FractalDimension

= For many boxes of sizesxs: "~ .
N, =) max graylevel —min graylevel +1

Wheré r=s/ M |

= Fractal dimensionis _..|
the slope in a log(N,) % .
by log(1/r) plot

3
log(1/r)
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Co-occurrence Statistics

m Grey level co-occurrence matrix:

Py (s 1) =[{((r,9),(t,)): 1(r,8) =i, 1(t,v) = j}
where d is the distance at an angle @
between pixels of intensities i and j and |[.]| is
the cardinality of a set

s Contrast 2. 2,(- 7Py,
= Correlation Zz(i_ﬂX)(jG_;yy)Pd G)
: = Energy ZZPj(i,j)

L . Homogeneity ZZI_F:|(Ii_jJ)|
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Directional Histogram

m Convolve with directional masks

For each mask, sum
responses over image
= Form normalized
histogram
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Courtesy of NASA/JPL-Caltech
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Textons: Filter Banks

= Filter banks:

Introduction e Feature Extraction e Rock Detection & Segmentation e Geologic Classification e Conclusions 15



Textons: Forming Textons

= Convolve filters with all images

m Aggregate responses

m Cluster responses to form textons
n Example textons:
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Textons: Computing Histograms

s Compute nearest texton for each pixel
= Form texton histogram

Texton Map Texton Histogram
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Shape

s Form: overall shape

— Reflects conditions of deposition

— Affects settling velocity and mode of transport
m Roundness: sharpness of corners

— Caused by impacts during transport
— Increases with distance of travel
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Shape

m Geologists use sphericity and roundness

o Often measured with a visual chart
O Qg Q| Ry | e [ e

.5 {:5 ] .;:‘_:3 B | angular
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roundness = anguiarity
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wiell
_. | | Q < = | rounded R.S. Crofts. A visual measure of
| I N | _ ] shingle particle form for use in the

very sub- sub- very field. Journal of Sedimentary
spherical spherical spherical flat flat flat Petrology, 44:931-934, 1974.
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<4 Form Metrics
= Riley Sphericity:

= Elongation:

— Ratio of minor and major
axes of best-fitting ellipse

m Ellipse Error:

— Average distance from each
boundary point to the
closest point on the best-fit
ellipse
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Form Metrics
m Circular Variance:
S s
m Elliptic Variance:
S C by

N/urc i=1
- Where :u:Zpi ’ur:ZZI:Hpi_'uH lurc:Z\/(pi_:u)TC_l(pi_:u)
:} |1=1 N T -
_' C= WZ( P — (P — 1)
;'ﬂ p. = (x,y,) is the it contour point and N is the
S number of contour points
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<& Roundness Metrics

N
= Wadell Roundness: Zﬁ

=1

NR

= Angularity:

— Standard deviation of the
curvature at all boundary points

m Fractal Dimension:
— Box dimension
— Divider dimension

perimeter
re w

A

15 20 25
lambda
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Roundness Metrics

= Diepenbroek Roundness:

— Distance from each boundary point from
the centroid forms a 1-D signal

— Take a weighted sum of the Fourier
transform of the signal

120F E

radius
amplitude
amplitude

h:':lgrmgnic:16
blue: average Fourier transform
red: normalization function
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Other Metrics

s Compactness/Circularity
~J Area Perimeter?

Perimeter Area

= Convexity

Perimete r-convexhull or AreaconveXhU“
Perimeter, Area, .,
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Experiments

. | I | e very
= Purpose: determine D008 s =
accuracy of sphericityand . o | o | © ‘ Q| oy | = | enouer
roundness metrics — T
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from image
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Results

s Plot computed measure vs. geologist’s measure
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Sphericity Accuracy

s Compute correlation coefficients:

1

G
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Roundness Accuracy

s Compute correlation coefficients:

1r

—*—Wadell Roundness

— Wadell Strongest Corners

—Wadell Largest Corners
Box Dimension

—®  Divider Dimension
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Rock Detection & Segmentation

m Detect rocks with an accurately
localized boundary

= Use hand-segmentation for training
= Two-step, multi-scale

approach:
— Superpixel segmentation
— Region-merging
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Rock Detection & Segmentation

Superpixel Segmentation

l

Feature Extraction

l

Identify Candidate Superpixels

l

Region-Merging

l

Refining Boundary

c Introduction e Feature Extraction e Rock Detection & Segmentation e Geologic Classification e Conclusions 31



Superpixel Segmentation

= Normalized-cuts + boundary detector
(Greg Mori, Simon Fraser University)

m Perform at 4 scales
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Region Features

m Features that can distinguish rock
regions from non-rock regions

m As previously described:
— Intensity, Color
— Texture
— Shape
= Also compute difference between
superpixel and context region
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Region Features

= Shading
— Linear gradient due to irectional lighting

ﬁlh. o
— Darker near boundary/highlight in center

e Quadratic gradient

e Mean intensity near center — mean intensity
near boundary

G
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Region Features

= Boundary contours

— Natural image boundary detection
(Martin, Fowlkes, Malik, UC Berkeley)
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Detection: Train Classifiers

= On all known rocks and superpixels in
training images:

— Compute intensity, color, texture, shape,
shading, boundary contour features

m Train two SVM classifiers:
— Simple (intensity, color,
texture features)
e Applicable to parts of rocks

— Powerful (all features)
e Only applicable to full rocks




%5 Detection: Candidate Regions

= On test image, apply simple classifier to
all superpixels at all scales

= Identify most likely rock regions
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Detection: Region-Merging

m For each clump (up to 10 superpixels):

— Evaluate all features on all combinations of
superpixels

— Apply powerful classifierto each
combination to identify most likely rocks
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Detection: Refine Boundary

m Resolve overlapping rocks across scales
by taking the most probable one
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Experiments

m Purpose: determine performance of
rock detection and segmentation

— Region labeling accuracy
— Rock detection accuracy
— Boundary localization accuracy

m Data set:
— 8 images
— Approximately 15 rocks in each
— Hand labeled for ground truth

Introduction e Feature Extraction e Rock Detection & Segmentation e Geologic Classification ¢ Conclusions 40



Introduction e Feature Extraction ¢ Rock Detection & Segmentation e Geologic Classification ¢ Conclusions 41



Results

m Example results:
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Region Labeling Accuracy

= Cross-validation accuracy of rock vs.
non-rock classifier

Feature Set Accuracy (%)
All 99.6
o Intensity/Color 98.9
Texture 99.1
Shape 98.4
Shading 97.9
L_;.y Boundary Contours 98.0
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Rock Detection Accuracy

= Only 1 rock missed completely
m Average precision: 85.9%

= Average recall: 87.7%

m Errors:
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Boundary Localization Accuracy

= Measured with |
Chamfer distance: |
— Average distance from % |
detected boundary point £
to ground truth boundary5* ... -
point Tt
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Geologic Classification

= Igheous
= Metamorphic
m Sedimentary: chemical, clastic

0% 9w

chemical clastic

\
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Geologic Classification

s Compute feature vector on all rocks:
— Albedo, color, texture, shape

m Train k-NN or SVM classifier on subset
of rocks

= Apply classifier to remaining rocks
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Experiments

m Purpose: determine classification
accuracy

— Compare classifiers and feature sets

= Data set:
— Geologist’s classification of 100 rocks

— Select a subset of these with 19 rocks per
class: chemical, clastic

m Leave-out-one-rock cross-validation
= Average results over multiple trials
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Results

s Compare classifiers:

. Classification
Classifier

Accuracy (%)
1-NN 82.4
2-NN 83.4
-\ 3-NN 82.9
4-NN 82.1
5-NN 78.9
6-NN 77.6
P SVM 86.3
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Results

s Compare features:

lassificati
Feature Set Class Cat'(? N
Accuracy (%)
All 86.3
Intensity/Color 86.1
Texture 76.3
Shape 70.0
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’4 Summary

m Features:
— CIELAB histograms most successful color measure

— Texton approach with MR8 filter bank most useful
for texture

— Accurate automated measures found for sphericity
and roundness (circular variance and Diepenbroek
roundness)

m Rock detection and segmentation:
— Accurately detected and localized most rocks

m Geologic classification:
— Current features shown successful
— Feature CIELAB histograms most useful
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Contributions

= Automated sphericity and roundness
measures for geologists

= Multi-scale rock detection with accurate
boundary localization

m First attempt at geologic classification
using more than just texture
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Future Work

m Features:
— Better color balancing or calibration needed
— Other possible filter banks to try in texton approach
— More possibilities for Fourier analysis of shape
— Effect of viewpoint on shape

s Rock detection and segmentation:

— Other possible superpixel segmentation algorithms

— More difficult data set desirable (overlapping rocks,
directional lighting)

s Geologic classification:
— Effect of boundary localization errors on classification
e — Larger and more diverse data set required
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Sphericity Correlation Coefficient

—*Riley sphericity

— Elongation

—— Compactness
Circularity

—#Circular Variance

—* Elliptic Variance
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Correlation Coefficient

——Wadell Roundness

— Wadell Strongest Corners

—— Wadell Largest Corners
Box Dimension

—= Divider Dimension

—Diepenbroek Roundness
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Region Labeling Accuracy

Feature Set Region Labeling Accuracy (%)
All 99.6
Intensity/Color 98.9
Intensity 97.4
Mean 96.7
‘ariance 94.9
Mean Difference 96.6
‘ariance Difference 94.3
Histogram 7.4
Histogram Difference y 2 96.3
Histogram Difference Euclidean 93.3
RGE Color 97.5
HSV Color 98.5
CIELab Color 98.9
Texture 99,1
Co-occurrence Statistics 08.3
Contrast 98.8
Correlation 93.7
Eneray 94.8
Homogeneity 97.3
Textons 99.0
Texton Histogram 99.0
Texton Histogram Difference 92.7
Texton Histogram Difference Euclidean 94.3
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Region Labeling Accuracy

Shading 97.9
Gradient x-y 94.9
Gradient Error 92.8
Quadratic Error 93.8
[nner/Outer Mean Difference 96.2
Boundary Contours 98.0
Shape 98.4
Angularity 98.9
Convex Perimeter 92.8
Convex Area 92.7
Circularity 92.7
Compactness 93.7
Elongation 92.8
Circular Variance 92.7
Elliptic Variance 92.7
Diepenbroek Roundness 96.5
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Geologic Classification Accuracy

Feature Classification Accuracy (%)
All 86.3
Intensity/Color 86. 1
Intensity Mean and Variance 60.3
Intensity Histogram 56.1
RGB Mean and Variance 73.9
RGEB Histogram 74.2
HSV Mean and Variance 67.9
HSV Histogram 734
CIELAB Mean and Variance 84.2
CIELAB Histogram 83.3
Texture 76.3
Fractal Dimension 58.9
Co-occurrence Statistics S84
Directionality Histogram 61.%8
Textons Histogram (Gabor) 67.4
Texton Histogram (MRE) 79.5




Geologic Classification Accuracy

Shape

Riley Sphericity

Elongation

Ellipse Error

Circular Variance

Elliptic Variance

Wadell Roundness

Wadell Roundness (Strongest Corners)
Wadell Roundness (Largest Corners)
Angularity

Fractal Dimension (Box)

Fractal Dimension (Divider)
Diepenbroek Roundness
Compactness

Circularity

Convex Perimeter

Convex Area

70.0
41.8
41.6
62.1
36.3
54.2
75.5
78.2
72.6
48.7
56.1
38.2
67.6
50.8
41.6
35.2
44.7
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