IlpJ ‘ Breast Cancer

ARTICLE

www.nature.com/npjbcancer

Image analysis with deep learning to predict breast cancer
grade, ER status, histologic subtype, and intrinsic subtype

Heather D. Couture', Lindsay A. Williams?, Joseph Geradts?, Sarah J. Nyante*, Ebonee N. Butler?, J. S. Marron>®, Charles M. Perou®’,

Melissa A. Troester®® and Marc Niethammer'?®

RNA-based, multi-gene molecular assays are available and widely used for patients with ER-positive/HER2-negative breast cancers.
However, RNA-based genomic tests can be costly and are not available in many countries. Methods for inferring molecular subtype
from histologic images may identify patients most likely to benefit from further genomic testing. To identify patients who could
benefit from molecular testing based on H&E stained histologic images, we developed an image analysis approach using deep
learning. A training set of 571 breast tumors was used to create image-based classifiers for tumor grade, ER status, PAM50 intrinsic
subtype, histologic subtype, and risk of recurrence score (ROR-PT). The resulting classifiers were applied to an independent test set
(n=288), and accuracy, sensitivity, and specificity of each was assessed on the test set. Histologic image analysis with deep
learning distinguished low-intermediate vs. high tumor grade (82% accuracy), ER status (84% accuracy), Basal-like vs. non-Basal-like
(77% accuracy), Ductal vs. Lobular (94% accuracy), and high vs. low-medium ROR-PT score (75% accuracy). Sampling considerations
in the training set minimized bias in the test set. Incorrect classification of ER status was significantly more common for Luminal B
tumors. These data provide proof of principle that molecular marker status, including a critical clinical biomarker (i.e., ER status), can
be predicted with accuracy >75% based on H&E features. Image-based methods could be promising for identifying patients with a
greater need for further genomic testing, or in place of classically scored variables typically accomplished using human-based

scoring.
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INTRODUCTION

Image-based features of breast cancers have an important role in
clinical prognostics. For example, tumor grade is strongly
associated with survivorship, even among tumors with other
favorable prognostic features such as estrogen receptor positiv-
ity."! However, major advances in prognostication over the past
decade have relied predominantly on molecular methods.>™
These methods are costly and are not routinely performed on all
clinical patients who could benefit from advanced molecular tests.
Methods for identifying patients who are likely to benefit from
further molecular testing are needed.

Image analysis of hematoxylin and eosin (H&E)-stained images
could identify patients most likely to benefit from genomic
testing. Several previous studies have utilized automated proces-
sing of H&E stained breast tumors to identify image features
associated with survival. These approaches have largely focused
on hand-crafted, user-designed features, such as statistics of
shape and color, to capture cell-by cell morphology, which are
difficult to adapt to new data sets.>® Prior work on automated
grading addresses mitotic count,” nuclear atypia,® and tubule
formation® individually; however, the latter two require a time-
consuming nuclear segmentation that is also difficult to adapt to
new data sets. Feature learning on small image patches to identify

novel features associated with survival has shown the utility of
somewhat more complex features for breast’® and other
cancers,""'? but the focus of that work still remains on smaller-
scale properties due to their use of small image patches. None of
these approaches is able to capture larger scale features, such as
tissue architecture, or properties that are too complex for humans
to capture. These abstract features could provide unforeseen
insights into prognostics.

Deep learning is a method of learning a hierarchy of features
where the higher level concepts are built on the lower level ones.
Automatically learning these abstract features enables the system
to learn complex functions mapping an input to an output
without the need for hand-crafted features. Significant advances
in this area have begun to show promise for tumor detection,’®
metastatic cancer detection in lymph nodes,'* mitosis detec-
tion,”'” tissue segmentation,'® and segmentation and detection
of a number of tissue structures.'”” However, all of the previous
successes of deep learning from H&Es have focused on detecting
image-based properties that pathologists can routinely assess
visually. Using deep learning to predict complex properties that
are not visually apparent to pathologists, such as receptor status,
intrinsic subtype or even risk of recurrence, has not been
previously described.
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We hypothesized that a deep learning method for image
analysis could be applied to classify H&E stained breast tumor
tissue microarray (TMA) images with respect to histologic and
molecular features. We used TMA images from the population-
based Carolina Breast Cancer Study Phase 3 (2008-2013) to
perform deep learning-based image analysis aimed at capturing
larger scale and more complex properties including tumor grade,
histologic subtype, estrogen receptor (ER) status, intrinsic breast
cancer subtype, and Risk of Recurrence (ROR)-PT score.?

RESULTS

Training and test sets were established from a random division of
the data using TMA cores from 2/3 (n=571) and 1/3 (n = 288) of
the eligible CBCS3 patients, respectively. There were no significant
differences between the training and the test sets concerning
patient or tumor characteristics (Table 1). Across multiple 1.0-mm

Table 1. Patient and tumor characteristics for the image analysis

training and test set, CBCS3
Training set Test set Chi-square
(N=571) (N = 288) p-value
N (%°) N (%°)

Age

<50 years 280 (29.6) 133 (28.0) 0.64

>50 years 291 (70.4) 155 (72.0)

Race

White 298 (79.0) 150 (78.7) 0.90

African-American 272 (21.0) 138 (21.3)

Missing 1

Grade

Low-intermediate 330 (65.8) 162 (66.5) 0.85

High 240 (34.2) 125 (33.5)

Missing 1 1

Stage

(] 485 (86.4) 259 (90.2) 0.17
1, v 85 (13.6) 29 (9.8)

Missing 1

Node status

Negative 354 (65.2) 191 (69.1) 0.35

Positive 214 (34.8) 97 (30.9)

Missing 3

Tumor size

<2cm 334 (62.5) 174 (67.2) 0.26

>2cm 235 (37.5) 114 (32.8)

Missing 2

ER status

Negative 164 (24.9) 91 (23.1) 0.62

Positive 405 (75.1) 197 (76.9)

Missing 2

PAM50 subtype

Luminal A 149 (46.1) 74 (47.1) 0.27

Luminal B 78 (18.2) 33 (20.9)

Basal-like 92 (20.9) 49 (21.6)

HER2 46 (11.9) 15 (5.9)

Normal-like 9 (2.9) 9 (4.5)

Missing 197 108

2All percentages weighted for sampling design
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cores per patient, the probability of a tumor being classified as
high grade by image analysis was calculated, and Fig. 1 shows that
a bimodal distribution of probabilities was observed. By establish-
ing a cut point at > 0.80, high-grade tumors were detected with
accuracy of 82% in the test set (kappa 0.64) (Figure 1a, b and Table
2). Considering low/intermediate as a group, the percent
agreement with pathologist-classified tumor grade was slightly
lower than the percent agreement between two breast pathol-
ogists who independently reviewed these same patients (overall
89%, kappa 0.78). Tumors with pathologist-defined intermediate
grade were more likely to be misclassified as high-grade tumors
by image analysis (37%), while only 7% of low-grade tumors were
misclassified (results not shown). When comparing the misclassi-
fication of intermediate grade and low-grade tumors as high
grade between two pathologists in a subset of CBCS tumors,
errors in classification of intermediate grade tumors as high-grade
tumors occurred <10% of the time and never occurred for low-
grade tumors (results not shown).

Image analysis accuracy for predicting molecular characteristics
was also high. Accuracy for ER status was 84% (kappa 0.64) and
both sensitivity (88%) and specificity (76%) were high (Table 3).
However, tumor grade is strongly associated with ER status in
most patient populations, and we were interested in increasing
accuracy among patients with low-to-intermediate grade tumors
where genomic testing is most likely to influence patient care.
Thus, we also employed a training strategy that weighted samples
to ensure that low and intermediate grade distributions were
similar between ER-positive and ER-negative tumors. This reduced
accuracy among high-grade tumors (from 77 to 75%), and
decreased accuracy among low-intermediate grade tumors (from
91 to 84% accuracy). Using the same weighting strategy, we
trained a classifier to predict Basal-like vs. non-Basal-like (Luminal
A, Luminal B, HER2, Normal-like combined) PAM50 subtype (Table
4). The classifier had overall accuracy of 77%, but accuracy of 85%
among low-intermediate grade tumors and 70% among high-
grade tumors.

To examine the potential clinical relevance of using this image
analysis technique, we determined the sensitivity and specificity of
image analysis and the ability to predict whether or not a tumor is
classified as having high vs. low-medium risk of recurrence score
(ROR-PT) (Table 4). ROR-PT is determined using a combination of
tumor information including PAM50 subtype, tumor proliferation,
and tumor size.? Overall the accuracy of image analysis for ROR-PT
was high at 76% (kappa 0.47). In grade-stratified analyses,
accuracy for ROR-PT was higher among low-intermediate grade
tumors (86%) than high-grade tumors (67%).

In addition to using image analysis to predict tumor grade, we
also tested this approach using histologic subtype, another visual
feature of the tumor (Table 4). Image analysis was able to predict a
lobular compared to ductal tumor with 94% accuracy (kappa 0.66).
The accuracy was slightly lower when restricted to low-grade
tumors (89%), but was non-estimable among high-grade tumors
as there were no high-grade lobular tumors in the test set.

To evaluate which clinical factors were associated with the
accuracy of the image-based metrics, we evaluated predictors of
accurate/inaccurate ER status calls (Supplemental Table 1) among
patients in the test set (n=288). Considering age, race, grade,
stage, lymph node status, ER status, Ki67 status, and mitotic tumor
grade, no significant differences in accuracy of image-based ER
assignment were observed. However, we found that image
analysis tended to inaccurately predict ER status when tumors
were Luminal B [OR, (95% Cl); 4.42 (1.32-14.77)].

We gained further insight into the performance of our method
by examining the class predictions across cores from the same
patient and within each core. Figure 2 shows four cores from a
single patient, along with the class predictions over different
regions of the image. While three cores are predicted ER negative
and Basal-like intrinsic subtype, the fourth is predicted mostly ER
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Fig. 1 a. Histogram for probability of high-grade tumor by image analysis according to proportion of pathologist-classified low-intermediate
(black) or high grade (red) in the test set. The cut point of >0.80 was selected. b. Bee Swarm plot displaying pathologist classification of tumor
grade as a function of the image grade score in the test set. Points within each grade group are adjusted horizontally to avoid overlap. The
black dots indicate image analysis classified low-intermediate tumor grade and the red dots indicate image analysis classified high-grade

tumors

negative and non-Basal-like, indicating that some intra-tumoral
heterogeneity might be present between cores.

DISCUSSION

In this study, we used a deep learning approach to conduct image
analysis on H&E stained breast tumor tissue microarray samples
from the population-based Carolina Breast Cancer Study, Phase 3
(2008-2013). Further details on the image analysis techniques are
given in the Methods section. First, we found that the agreement
between image analysis and the pathologist-classified grade was
only slightly lower than that observed for two study pathologists,
and we obtained high agreement and kappa values. Second, we
found that ER status, RNA-based molecular subtype (Basal-like vs.
non-Basal-like), and risk of recurrence score (ROR-PT) could be
predicted with approximately 75-80% accuracy. Further, we found
the image analysis accuracy to be 94% for ductal vs. lobular
histologic subtype.

Previous literature based on comparing two pathologists shows
that image assessment is subject to some disagreement,'®
particularly among the intermediate grade tumors as we observed
between the image analysis and pathologist classification in our
study. Other groups have reported inter-rater kappa statistics of
0.6-0.7 for tumor grade,'®'? in line with both our inter-pathologist
agreement and image analysis vs. pathologist agreement for
grade. Elsewhere in the literature lower kappa values around 0.5
have been reported between pathologists for histologic grade.”®
In light of this inherent variability in image assessment, deep
learning-based image analysis performed well at predicting tumor
grade as low-intermediate vs. high using H&E images.

It is particularly promising that histologic subtype and
molecular marker status could be predicted using image analysis.
While we did perform grade-weighting within ER classification,
there may be other image features of ER-positive tumors that are
not readily discernible and are driving the higher accuracy of ER-
positive images over ER negative. Agreement between true ER
status (by immunohistochemistry (IHC)) vs. image analysis (kappa
0.64) was slightly lower than that observed for centralized
pathology and SEER classifications for ER status (kappa 0.70)*'
and is similar to reports of agreement between different IHC
antibodies for ER that show substantial agreement (kappa
0.6-0.8).2% Previous work with CBCS phase 1 samples found that
agreement between medical records and staining of tissues was
also similar (kappa of 0.62).?* Overall, the agreement between IHC-
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based ER status and image analysis predictions based on H&E
stained images are similar to estimates for comparing ER status
classification in the literature. The high rate of agreement between
pathologist-scored and image analysis based histologic subtype
was also compelling (kappa 0.64). Altogether these results suggest
that some latent features indicative of underlying tumor biology
are present in H&E images and can be identified through deep
learning-based approaches.

We observed high accuracy of image analysis to predict ductal
versus lobular histologic subtype. The high accuracy may be due
to the arrangement of epithelial and stromal cells characteristic of
ductal and lobular tumors whereby lobular tumors are character-
ized by non-cohesive single file lines of epithelial cells infiltrating
the stroma and ductal tumors are characterized by sheets or nests
of epithelial cells embedded in the surrounding stroma.>**> We
speculate that it may be that the high contrast staining between
the epithelium and stromal components resulting from H&E
immunohistochemistry strengthens the ability of image analysis to
predict this biologic feature of the tumor.

With respect to intrinsic PAM50 subtype based solely upon
gene expression values, previous studies have not evaluated
image-based analysis for predicting intrinsic subtype or the risk of
recurrence using a score-based method, ROR-PT.? A few previous
studies have evaluated the clinical record or a central immuno-
histochemistry laboratory vs. RNA-based subtyping for Basal-like
vs. non-Basal-like. Even considering two molecular comparisons,
agreements do not exceed 90%. That is, Allott et al.*® found
approximately 90% agreement between Basal-like status for IHC-
based vs. RNA-based assessment and 77% agreement for
classification of Luminal A subtype.®® Our estimates are similar
suggesting that image analysis, even without the use of special
IHC stains, could be a viable option for classification of molecular
breast tumor subtype and ROR-PT from H&E stained images.

As with other studies, our work should be viewed in light of
some limitations. Our sample size was limited in our testing set to
288 patients, but this resulted in nearly 1000 TMA cores available
for use in our image analysis. Using a larger set of samples with
data on RNA-based subtype to balance training for each predictor
could be useful. For example, the fact that Luminal B patients had
a higher error rate might suggest there are some features of
Luminal B breast cancers that are distinct and image-detectable,
and a larger sample size would be helpful in identifying these.
Deep learning may be utilizing these features, but in our small
sample set, we are unable to tune our data to specifically identify
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Table 2.
tumors, CBCS3

Agreement between pathologists and between pathologists and image analysis in the test set for low-intermediate grade and high-grade

Pathologist agreement on tumor grade classification® (n = 242)

Image analysis agreement with pathologist tumor grade classification®
(n=288)

Pathologist 2

Clinical grade

kappa (95% Cl) 0.78 (0.70-0.86)

Pathologist 1 Low-intermediate grade High grade Patient average grade Low-intermediate grade High grade
Low-intermediate grade 113 23 Low-intermediate grade 118 8
High grade 4 102 High grade 45 117

% Agreement 89 % Agreement 82

kappa (95% Cl) 0.64 (0.55-0.72)

*To assess agreement between two pathologists, patients were sampled from CBCS Phases 1, 2, and 3 for second pathology review
PTo assess agreement between image analysis and a pathologist, only samples with digital image data (CBCS3 only) were included

those features or to clarify what they are in intuitive language.
Additionally, the use of binary classification systems for training
our digital algorithms (i.e., Basal-like vs. non-Basal-like) does not
allow us to differentiate among all five RNA-based intrinsic
subtypes. Currently, U.S.-based genomic tests provide continuous
risk scores, but also suggest relevant cut points that in essence
make these assays almost a binary classification; thus, binary
classification may have some utility in the current clinical context.
However, future work should extend these approaches to multi-
class classification. Furthermore, improved results may be
obtained by fine-tuning the Convolutional Neural Network for
breast cancer H&E image classification.

Image-based risk prediction has potential clinical value. Gene
expression data on tumor tissue samples is not uniformly available
for all patients and is costly to obtain in both a clinical and
epidemiologic setting. These results suggest that tumor histology
and molecular subtype along with the risk of recurrence (ROR-PT)
can be predicted from H&E images alone in a high-throughput,
objective, and accurate manner. These results could be used to
identify patients who would benefit from further genomic testing.
Furthermore, even ER testing is not routinely performed in
countries with limited laboratory testing resources and predicting
ER status by morphologic features may have utility for guiding
endocrine therapy in low-resource settings.

METHODS
Sample set

The training and test sets were both comprised of participants from the
Carolina Breast Cancer Study (CBCS), Phase 3 (2008-2013). Methods for
CBCS have been described elsewhere.?” Briefly, CBCS recruited participants
from 44 of the 100 North Carolina counties using rapid case ascertainment
via the North Carolina Central Cancer Registry. After giving informed
consent, patients were enrolled under an Institutional Review Board
protocol that maintains approval at the University of North Carolina. CBCS
eligibility criteria included being female, a first diagnosis of invasive breast
cancer, aged 20-74 years at diagnosis, and residence in specified counties.
Patients provided written informed consent to access tumor tissue blocks/
slides and medical records from treatment centers.

The training and test sets were formed by a random partition of the
data. The total number of patients available for the training and test set
from CBCS3 was 1203. These patients were divided into a group of 2/3 (n
= 802) for the training set and 1/3 (401) for the test set. Of the 802 patients
available for the training set, 571 had H&E images and biomarker data
available for contribution to the training set. Of the 401 patients eligible for
the test set, 288 had H&E images and biomarker data available. Patients in
the final training and test sets had information for tumor grade and
histologic subtype, determined via centralized breast pathologist review
within CBCS, along with biomarker data for ER status, PAM50 intrinsic
breast cancer subtype, and risk of recurrence (ROR-PT) where noted. The
H&E images were taken from tissue microarrays constructed with 1-4
1 mm cores for each patient, resulting in 932 core images for the test set
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analysis presented here. ER status for each TMA core was determined using
a digital algorithm as described by Allott et al.”® and was defined using a >
10% positivity cut point for immunohistochemistry staining.

Tumor tissue microarray construction

As has been described in detail by Allott et al., tumor tissue microarrays
were constructed for CBCS3 participants with available paraffin-embedded
tumor blocks.?® The CBCS study pathologist marked areas of invasive
breast cancer within a tumor on H&E stained whole slide images. The
marked areas were selected for coring and 1-4 tumor tissue cores per
participant were used in the TMA construction at the Translational
Pathology Laboratory at UNC. TMA slides were H&E stained and images
were generated at 20x magnification. Cores with insufficient tumor
cellularity were eliminated from the analysis.

Molecular marker data

In CBCS3, Nanostring assays were carried out on a randomly sampled
subset of available formalin fixed paraffin-embedded (FFPE) tumor tissue
cores. RNA was isolated from 2, 1.0-mm cores from the same FFPE block
using the Qiagen RNeasy FFPE kit (catalog # 73504). Nanostring assays,
which use RNA counting as a measure of gene expression, were
conducted. RNA-based intrinsic subtype was determined using the
PAMS50 gene signature described by Parker et al.? Based on the highest
Pearson correlation with a subtype-defined centroid, each tumor was
categorized into one of five intrinsic subtypes (Luminal A, Luminal B, HER2,
Basal-like, Normal-like), using the 50 gene, PAM50 signature.27 Categoriza-
tions were based on a previously validated risk of recurrence score,
generated using PAM50 subtype, tumor proliferation, and tumor size (ROR-
PT) with a cutoff for high of 64.7 from the continuous ROR-PR score.?

Image analysis pre-processing and feature extraction

Color and intensity normalization was first applied to standardize the
appearance across core images, countering effects due to different stain
amounts and protocols, as well as slide fading.?® The resulting stain intensity
channels were then used as input to the rest of our algorithm. Most
automated analyses of histology images use features that describe the
properties of cells such as statistics of shape and color.>*°3? Such features are
focused on cell-by-cell morphology and do not adapt well to new data sets.
We instead captured tissue properties with a Convolutional Neural Network
(CNN), which has been shown more successful for classification tasks on
histology.'®*> These multi-layered networks consist of convolution filters
applied to small patches of the image, followed by data reduction or pooling
layers. Similar to human visual processing, the low level filters detect small
structures such as edges and blobs. Intermediate layers capture increasingly
complex properties like shape and texture. The top layers of the network are
able to represent object parts like faces or bicycle tires. The convolution filters
are learned from data, creating discriminating features at multiple levels of
abstraction. There is no need to hand craft features. We used the VGG16
architecture (configuration D)** that was pre-trained on the ImageNet data
set, which consists of 1.2 million images from 1000 categories of objects and
scenes. Although ImageNet contains a vastly different type of image, CNNs
trained on this data set have been shown to transfer well to other data sets,>>~
*” including those from biomedical applications.'**® The lower layers of a
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Table 3. Impact of weighting by grade on accuracy, sensitivity, and specificity of ER status' in the test set, CBCS3
Unweighted Grade-trained
IHC ER status IHC ER status
Image Negative Positive Sensitivity Specificity Accuracy Kappa Negative Positive Sensitivity Specificity Accuracy Kappa
analysis (%) (%) (%) (95% CI) (%) (%) (%) (95% CI)
Overall
ER negative 260 80 88 76 84 0.64 246 104 84 72 80 0.55
(0.59-0.69) (0.50-0.61)
ER positive 83 572 97 548
Low-intermediate grade
ER negative 21 24 95 46 91 0.41 28 69 86 61 84 0.31
(0.28-0.55) (0.21-0.42)
ER positive 25 467 18 422
High grade
ER negative 239 46 69 80 77 0.49 (0.40-.57) 218 35 78 73 75 0.48
(0.44-0.56)
ER positive 58 104 79 125
Numbers represent individual cores (n = 995) from 288 patients, with up to four cores per patient; H&E cores were excluded if missing IHC data (n=11)

CNN are fairly generic, while the upper layers are much more specialized. The
lower layers only capture smaller-scale features, which do not provide enough
discriminating ability, while the upper layers are so specific to ImageNet that
they do not generalize well to histology. Intermediate layers are both
generalizable and discriminative for other tasks. In transferring to histology,
we must search for the layer that transfers best to our task. Output from each
set of convolutional layers, before max pooling, was extracted over each
image at full resolution to form a set of features for the image. Output from
the fourth set of convolutional layers was chosen because it performed better
than the outputs from other layers. The fourth set of convolutional layers
outputs features of dimension 512. These lower CNN layers are convolutional,
meaning that they can be run on any image size. For an image size of 2500 x
2500, they produce a grid of 284 x 284 x 512 features.

Model training and training data sets

In training a model to predict the class or characteristic group of a tumor,
such as high or low grade, we utilize patient-level labels. The TMA images
are much larger than the required input to the VGG16 CNN (i.e., typically
2500 x 2500 pixels for TMA spots vs. 224 x224 for VGG16). Further,
applying the original CNN fully convolutionally would produce features
that are not generalizable to histology. Thus, some modifications to the
VGG16 approach are necessary. A new classifier must be trained to operate
on the intermediate level features from VGG16. Simply taking the mean of
each feature over the image would limit our insight into which parts of the
image contributed to the classification. The patient-level labels are weak
compared to detailed patch- or pixel-level annotations used in most prior
work, necessitating a different classification framework called multiple
instance learning. In this setting, we were given a set of tumors, each
containing one or more image regions. We were given a label for each
tumor: tumor grade (pathologist determined), ER status (IHC-based),
PAMS50 intrinsic subtype (50 gene expression-based), ROR-PT (gene
expression-based), or histologic subtype (pathologist determined). Due
to the diverse appearance of tissue in a single image, learning the model
with the patient label applied to every image region did not perform well
in initial experiments. Heterogeneity of image region labels in each image
is instead accounted for while training the model.

In order to account for intra-tumor heterogeneity, a probabilistic model
was formed for how likely each image region is to belong to each class,
with these probabilities aggregated across all image regions to form a
prediction for the tumor as a whole. Image regions were generated as
800 x 800 pixel regions in the training images, with the mean of each CNN
feature computed over the region. A linear support vector machine
(SVM)* calibrated with isotonic regression®® was used to predict the
probability for each region. Isotonic regression fits a piecewise-constant
non-decreasing function, transforming the distance from the separating
hyperplane learned by the SVM to a probability that an image region
belongs to each class. This assumes that the SVM can rank image regions
accurately and only needs the distances converted to probabilities. Each
image region was labeled with the class of the tumor from which it
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belongs. The data for model fitting and calibration must be disjoint, so
cross-validation was used to split the training instances into five equal-
sized groups, where four were used for training and the remaining for
calibration/validation (the test set remains untouched). For each fold, an
SVM was learned on the training set and calibration was learned on the
calibration set with isotonic regression, thus forming an ensemble. An
ensemble of size five was selected to balance the desirability of a large
training set, a reasonably sized validation set, and the simultaneous
desirability of limiting the computation time. Predictions on the test set
were made by averaging probabilities from the five models. This ensemble
method also helped to soften any noise in the predictions caused by
incorrect image region labels due to heterogeneity.

Predictions for tumors were made by first forming a quantile function
(inverse cumulative distribution) of the calibrated SVM ensemble predic-
tions for the image regions using 16 equally spaced quantiles from images
in the training set. The quantiles of the training images were used to train
another linear SVM to predict the class label for the whole tumor, with
sigmoid calibration transforming the SVM output into probabilities. This
method allowed predictions to be made for individual image regions,
while also aggregating to overall tumor predictions.

When training the previously described SVM classifiers, we initially
weighted each class, including tumor grade, ER status, and Basal-like vs.
non-Basal-like intrinsic subtype, equally. To reduce the leverage of grade in
predicting ER status and intrinsic subtype, sample weighting was applied
using weights inversely proportional to the number of samples in the
group, i.e., low grade class 1, low grade class 2, high grade class 1, and high
grade class 2 were each weighted equally, where the classes are the ER
status, histologic subtype, or intrinsic subtype.

Prediction in test sets

At test time, 800 x 800 pixel overlapping regions with a stride of 400 pixels
were used as image regions from each TMA spot that is typically 2500 pixels
in diameter. Only image regions containing at least 50% tissue within the
core image field of view (i.e., 50% tissue, 50% glass) were used. The calibrated
SVM ensemble predicted the class of each image region by assigning a
probability of belonging to one of two classes (tumor grade 1 or 3, ER + or
ER-, Basal-like or non-Basal-like subtype, ductal or lobular histologic subtype,
and low-med or high ROR-PT). The probabilities computed on the image
regions from all cores were aggregated into a quantile function and the
second SVM was used to predict the class for the whole tumor.

Image-based classification

Cut points were determined for each tumor characteristic based on the
achievement of optimal sensitivity, specificity, and accuracy of each core
being correctly classified relative to the pathology or biomarker data. To
classify tumor grade, image analysis assigned a probability score of being a
high-grade vs. low-grade tumor for each image. A cut point of greater than
0.80 was used for high-grade tumors (Fig. 1a). Independently, traditional
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Table 4. Accuracy, sensitivity, and specificity of non-Basal-like intrinsic subtype, ROR-PT, and histologic subtype based on image analysis® in the test
set, CBCS3
Image analysis Intrinsic subtype®
Basal-like Non-Basal-like Sensitivity (%) Specificity (%) Accuracy (%) Kappa (95% Cl)
Overall
Basal-like 131 101 78 73 77 0.47 (0.32-0.54)
Non-Basal-like 48 368
Low-intermediate grade
Basal-like 11 41 86 73 85 0.27 (0.13-0.41)
Non-Basal-like 4 245
High grade
Basal-like 120 60 67 73 70 0.40 (0.31-0.50)
Non-Basal-like 44 123
ROR-PT status®
Low-Med High Sensitivity (%) Specificity (%) Accuracy (%) Kappa (95% Cl)
Overall
Low-Med 342 40 79 74 76 0.47 (0.40-0.54)
High 118 148
Low-intermediate grade
Low-med 245 16 47 90 86 0.32 (0.17-0.48)
High 26 14
High grade
Low-med 97 24 85 51 67 0.35 (0.26-0.44)
High 92 134
Histologic subtype®
Ductal Lobular Sensitivity (%) Specificity (%) Accuracy (%) Kappa (95% Cl)
Overall
Ductal 710 24 71 96 94 0.66 (0.57-0.74)
Lobular 28 58
Low-intermediate grade
Ductal 268 24 71 94 89 0.63 (0.53-0.73)
Lobular 23 58
High grade
Ductal 442 0 N/A 99 99 N/A
Lobular 5 0
®Numbers represent individual cores from patients where 1-4 cores were available. Cores were excluded if RNA data (n = 358) was missing
POne-hundred eighty patients with 648 cores for intrinsic subtype and ROR-PT
“Two-hundred thirty-three patients with 820 cores for histologic subtype

pathologist scoring methods were used to classify tumors as a combined
grade of low, intermediate, or high. Also, two independent pathologists’
classifications of tumor grade for the same tissue sample were assessed to
compare the agreement between two pathologists to that observed for
image analysis vs. pathologist classification. To classify patients as ER
positive based on image analysis, the same principles were used as those
described for tumor grade where each core was assigned a probability of
ER-positivity. A probability of greater than 0.50 was classified as ER-positive
by image analysis. To classify patients as ER positive based on biomarker
data, samples had to have 10% or more of nuclei stained positive for ER by
immunohistochemistry. For Basal-like vs. non-Basal-like RNA-based sub-
type, image analysis assigned a probability of each image being Basal-like
and a probability cut point of >0.60 was used to classify Basal-like vs. non-
Basal-like tumors. These results were compared against the PAM50-based
intrinsic subtype classification methods using gene expression described
previously.? Similarly, we used image analysis to predict whether a tumor
had a high or low-medium risk of recurrence. Image analysis predicted
ROR-PT based on a cut point of 0.20 for the probability of each TMA spot
being classified as high ROR-PT. Histologic subtype was restricted to ductal
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and lobular tumors and was based on a cut point of 0.1 for the probability
of each TMA spot being classified as lobular.

Prediction accuracy and associations with clinical characteristics

For core-level comparisons, image region probabilities were calculated of
being a high-grade tumor, ER positive, Basal-like subtype, lobular subtype,
or high ROR-PT. For each variable, sensitivity, specificity, accuracy and
kappa statistics (95% confidence interval [95% Cl]) were determined
comparing the image analysis classification to tumor grade for the tumor
tissue as a whole, IHC-based ER status for each corresponding TMA core
(ER positivity is available for each core rather than just for the whole tumor
tissue), PAM50 subtype for the tumor tissue as a whole, histologic subtype
for the tumor tissue as a whole, and ROR-PT for the tumor tissue as a
whole. Accurate classification was defined as identical classification based
on histologic image analysis and biomarker data for the same core. To
determine whether any clinical characteristics were associated with an
inaccurate image-based call for ER status, we estimated odds ratios (ORs)
and 95% confidence intervals (95% Cl) for the association between patient
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Fig. 2 Four H&E cores from a single patient and heat maps indicating the class predictions over different regions of the image. Class
probabilities are indicated by the intensity of red/blue color with greater intensity for higher probabilities. Uncertainty in the prediction is
indicated by white. This patient was labeled as high grade, ER negative, Basal-like intrinsic subtype, ductal histologic subtype, and high ROR

characteristics and the accuracy of ER status (i.e. concordant with clinical
status vs. discordant with clinical status) (Supplemental Table 1). All
statistical analyses were done in SAS version 9.4 (SAS Institute, Cary, NC). p-
values were two-sided with an alpha of 0.05.

Code availability
Available upon request.

Data availability

De-identified data, including selected covariates and histological images,
are available upon request.
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