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instance aggregation: mean or quantile
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Approach: Multiple Instance (MI) learning with a CNN by adding an MI layer to 
aggregate instance predictions

Contributions:
1) A more general MI aggregation method that uses the quantile function for 

pooling and learns how to aggregate instance predictions
2) An MI augmentation technique for training MI methods
3) Exploration of single instance and MI learning on a continuous spectrum, 

demonstrating the importance of MI learning on heterogeneous images
4) Evaluation on a large data set of patient samples, showing significant gains 

in classifying breast cancer tissue microarrays
5) A method for visualizing the predictions of each instance, providing 

interpretability to the method
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Homogeneous

Goals:
●  Classification of large, heterogeneous images with a CNN
●  Prediction of molecular properties of tumors that are not            

 visually apparent to pathologists

A fully convolutional network forms the instance classifier, followed by a global MI layer for instance aggregation

Aggregate instance predictions into bag prediction
Max: maximum of predictions for each class
Mean: mean of instance predictions
Quantile: capture full distribution of instance predictions 
with quantile function and learn a mapping to bag class
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● Cancer research suggests that heterogeneous tumors might be more aggressive
● Further validation of predicted heterogeneity and association with survival needed
● Could provide biological insights into cancer progression

Predicted Heterogeneity
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Data set:
● H&E histology tissue microarray
● 1713 patient samples from the Carolina Breast Cancer Study, Phase 3
● 4 images per patient (5970 images total)

MI Aggregation:
Compare aggregation methods
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Task Max Mean Quantile
Histologic subtype
Estrogen receptor status
Grade
Risk of recurrence (ROR-PT)
Genetic subtype

.898 (.004)

.683 (.006)

.408 (.019)

.542 (.010)
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.931 (.004)

.833 (.008)

.680 (.003)

.595 (.003)

.548 (.006)

.952 (.003)

.841 (.006)

.676 (.006)

.582 (.008)

.544 (.003)

MI Augmentation and the Importance of MI Learning: 
MI learning is essential with heterogeneous data

● Randomly select subset of instances from each bag during each epoch
● All instances used at test time
● Used to study single vs. multiple 

instance learning
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