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Problem Definition

Goals:

» Classification of large, heterogeneous images with a CNN

* Prediction of molecular properties of tumors that are not
visually apparent to pathologists

Approach: Multiple Instance (MI) learning with a CNN by adding an Ml layer to
aggregate instance predictions

Contributions:

1) A more general Ml aggregation method that uses the quantile function for
pooling and learns how to aggregate instance predictions

2) An MI augmentation technique for training Ml methods

3) Exploration of single instance and Ml learning on a continuous spectrum,
demonstrating the importance of Ml learning on heterogeneous images

4) Evaluation on a large data set of patient samples, showing significant gains
In classifying breast cancer tissue microarrays

5) A method for visualizing the predictions of each instance, providing
Interpretabllity to the method
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Multiple Instance Learning with a CNN

A fully convolutional network forms the instance classifier, followed by a global MI layer for instance aggregation
error backpropagation
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Instance Aggregation

Instance aggregation: mean or quantile

multiple instance learning

Training with MI Augmentation
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Results: Classification Accuracy

Data set: | | MI Augmentation and the Importance of Ml Learning:
* H&E h|st_ology tissue microarray | Ml learning is essential with heterogeneous data
» 1713 patient samples from the Carolina Breast Cancer Study, Phase 3 1
« 4 images per patient (5970 images total) 0O ————
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Histologic subtype .898 (.004) .931 (.004) .952 (.003) >0 ’ Genetic
Estrogen receptor status .683 (.006) .833 (.008) .841 (.006) 0.5 / subtype
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Genetic subtype 321 (.032) .548 (.006) .544 (.003) learning cropped image size for training learning

Application: Tumor Heterogeneity

» Cancer research suggests that heterogeneous tumors might be more aggressive Predicted Heterogeneity
* Further validation of predicted heterogeneity and association with survival needed . Grade 1 vs. 3 Genetic Subtype Basal vs. LUmA
» Could provide biological insights into cancer progression E grade 1 é | . Bacal
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