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Goal: improve predictions by using automated 
image analysis

● Faster
● More repeatable
● Capture properties that pathologists cannot

Method: learn dictionary of patch-based features 
by sparse coding to describe tumor tissue and 
predict class

Contributions:
1)Discover subtle differences between classes 

with task-driven dictionary learning
2)Capture local and architectural structure with a 

hierarchical model
3)Provide insight into sample classification with 

visualizations
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Model image patches as sparse linear combinations of 
dictionary elements

Tune dictionary to classification task

Approach: minimize logistic loss by updating classifier 
and dictionary using stochastic gradient descent

Algorithm:
Initialize dictionary with unsupervised dictionary learning
Initialize classifier with logistic regression on set of 
patches
Repeat until convergence:

● Select random images patches
● Compute sparse encodings
● Update classifier with gradient descent step
● Update dictionary with gradient descent step

Melanoma vs. mole Breast tumor subtype

Melanoma vs. mole
Breast tumor subtype
Basal vs. Luminal A

Unsupervised 
dictionary

Task-driven 
dictionary

Unsupervised 
dictionary

Task-driven 
dictionary

Level 1 55.2% 59.0% 50.7% 52.0%
Level 2 59.8% 63.9% 56.4% 58.0%
Level 3 59.0% 70.0% 51.1% 54.6%

Interpreting classification models:
Apply classifier to patches within image to determine 
which regions are contributing to the predicted class

whole slide tissue microarray

Applications:
● Diagnosis – differentiate between benign and malignant lesions
● Prognosis – identify dangerous tumors
● Subtyping – complement recent methods that target treatment 

based on molecular analysis

  Hierarchy of Features

To capture structures at different scales:
Form hierarchy by alternating encoding and 
max pooling

● Local translation invariance
● Downsizes representation to capture 

larger-scale properties on next level

Classify images by applying task-driven patch 
classifier and taking mean across image

Melanoma vs. mole
Breast tumor subtype
Basal vs. Luminal A

Unsupervised 
dictionary

Task-driven 
dictionary

Unsupervised 
dictionary

Task-driven 
dictionary

Level 1 65.5% 53.6% 61.5% 59.3%
Level 2 82.9% 84.4% 64.9% 64.6%
Level 3 84.5% 88.5% 70.1% 62.1%

Patch-level Classification Accuracy

Patient-level Classification Accuracy
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Melanoma Mole

31 benign nevi, 21 melanoma 43 Basal, 42 Luminal A
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