HIERARCHICAL TASK-DRIVEN FEATURE
LEARNING FOR TUMOR HISTOLOGY

Heather D. Couture (heather@cs.unc.edu), J.S. Marron, Nancy E. Thomas, Charles M. Perou, Marc Niethammer — University of North Carolina

Problem Definition

Goal: improve predictions by using automated
. s
sthemole  MagC analysis
dangerous? « More repeatable
» Capture properties that pathologists cannot
Method: learn dictionary of patch-based features
Personalized by sparse coding to describe tumor tissue and
Breast tumor : ) .
subtype || VS treatment predict class
Rasal LumlnaIA Contributions:
1) Discover subtle differences between classes
Applications: with task-driven dictionary learning
» Diagnosis — differentiate between benign and malignant lesions 2)Capture local and architectural structure with a
* Prognosis — identify dangerous tumors hierarchical model
» Subtyping — complement recent methods that target treatment  3)Provide insight into sample classification with
based on molecular analysis visualizations

Unsupervised Dictionary Learning

Task-Driven Dictionary Learning

Model image patches as sparse linear combinations of Tune dictionary to classification task
dictionary elements
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IC:> Approach: minimize logistic loss by updating classifier
O and dictionary using stochastic gradient descent
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Algorithm:
cos [l - o Initialize dictionary with unsupervised dictionary learning
s N | Initialize classifier with logistic regression on set of
I I patches
' } Repeat until convergence:

REEen e Select random images patches
"  Compute sparse encodings
» Update classifier with gradient descent step
» Update dictionary with gradient descent step

IMAGE ENCODING

novel image sparse encoding

Hierarchy of Features

level 1 level 2 To capture structures at different scales:
encoding : encoding Form hierarchy by alternating encoding and
pooling | max pooling
dictionary 1 [ v v dictionary2 ____ pooling e Local translation invariance
| R A H . 3 * Downsizes representation to capture

larger-scale properties on next level
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| Classify images by applying task-driven patch
| maxl classifier and taking mean across image
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predict class
for each patch

predict class
for each patch

Results

Melanoma vs. mole Breast tumor subtype Interpreting classification models:
IXX Apply classifier to patches within image to determine
which regions are contributing to the predicted class
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Level Unsupervised dictionary Task-driven dictionary
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whole slide tissue microarray

31 benign nevi, 21 melanoma 43 Basal, 42 Luminal A

Patch-level Classification Accuracy o
Original image

Breast tumor subtype
Melanoma vs. mole Basal vs. Luminal A

Unsupervised Task-driven Unsupervised Task-driven
dictionary dictionary dictionary dictionary

Level 1 55.2% 59.0% 50.7% 52.0%
Level 2 59.8% 63.9% 56.4% 58.0%
Level 3 59.0% 70.0% 51.1% 54.6%

Patient-level Classification Accuracy

Breast tumor subtype
Melanoma vs. mole Basal vs. Luminal A

Unsupervised Task-driven Unsupervised Task-driven
dictionary dictionary dictionary dictionary

Level 1 65.5% 53.6% 61.5% 59.3%
Level 2 32.9% 84.4% 64.9% 64.6%
Level 3 845% 885% 701% 621% Melanoma —» Mole
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